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Motivation

Not all questions in mathematics can be answered in ZFC

Abstractly: Gödel’s incompleteness theorems.

Nowadays there are numerous concrete examples:

Continuum Problem (set theory),

Whitehead Problem (group theory),

Borel Conjecture (measure theory),

Kaplansky’s Conjecture on Banach algebras (analysis),

Brown-Douglas-Fillmore Problem (operator algebras),

. . . .
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Motivation

The Continuum Problem

Let us focus on the Continuum Problem:

Question

Is there a set A such that |N| < |A| < |R|?
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Sandra Müller (TU Wien)

Gg



Motivation

The Continuum Problem

Let us focus on the Continuum Problem:

Question

Is there a set A such that |N| < |A| < |R|?

Determinacy Axioms Large Cardinals Forcing Axioms

Sandra Müller (TU Wien)

Gg

"How
many reas

are there'

↳ Can neither be proven nor disproven from EFC.



Motivation

The Continuum Problem

Let us focus on the Continuum Problem:

Question

Is there a set A such that |N| < |A| < |R|?

Determinacy Axioms Large Cardinals Forcing Axioms

Sandra Müller (TU Wien)

Gg



Motivation

The Continuum Problem

Let us focus on the Continuum Problem:

Question

Is there a set A such that |N| < |A| < |R|?

Determinacy Axioms Large Cardinals Forcing Axioms

Sandra Müller (TU Wien)

"How
many reasK

are there'

↳ Can neither be proven nor disproven from EFC.

What are possible extensions of EE? How do they decide it?



Motivation

The Continuum Problem

Let us focus on the Continuum Problem:

Question

Is there a set A such that |N| < |A| < |R|?

Determinacy Axioms Large Cardinals Forcing Axioms

Sandra Müller (TU Wien)

reals"Howmany,

↳ Can neither be proven nor disproven from EFC.

What are possible extensions of EE? How do they decide it?

d
CH holds,
i.e
.,
there is

no such A



Motivation

The Continuum Problem

Let us focus on the Continuum Problem:

Question

Is there a set A such that |N| < |A| < |R|?

Determinacy Axioms Large Cardinals Forcing Axioms

Sandra Müller (TU Wien)



Motivation

The Continuum Problem

Let us focus on the Continuum Problem:

Question

Is there a set A such that |N| < |A| < |R|?

Determinacy Axioms Large Cardinals Forcing Axioms

Sandra Müller (TU Wien)



Motivation

The Continuum Problem

Let us focus on the Continuum Problem:

Question

Is there a set A such that |N| < |A| < |R|?

Determinacy Axioms Large Cardinals Forcing Axioms

Sandra Müller (TU Wien)



Determinacy Axioms

Determinacy Axioms: Games in set theory

Sandra Müller (TU Wien)



Determinacy Axioms

Determinacy Axioms: Games in set theory

Sandra Müller (TU Wien)



Determinacy Axioms

Determinacy Axioms: Games in set theory

Sandra Müller (TU Wien)



Determinacy Axioms

Determinacy Axioms: Games in set theory

Sandra Müller (TU Wien)



Determinacy Axioms

Determinacy Axioms: Games in set theory

Sandra Müller (TU Wien)



Determinacy Axioms

Determinacy Axioms: Games in set theory

Sandra Müller (TU Wien)



Determinacy Axioms

Determinacy Axioms: Games in set theory

Sandra Müller (TU Wien)



Determinacy Axioms

Determinacy Axioms: Games in set theory

Sandra Müller (TU Wien)



Determinacy Axioms

Determinacy Axioms: Games in set theory

Sandra Müller (TU Wien)



Determinacy Axioms

Determinacy Axioms: Games in set theory

Sandra Müller (TU Wien)



Determinacy Axioms

What is determinacy good for?

Theorem (Mycielski, Swierczkowski, Mazur, Davis, 60’s)

If all sets of reals are determined, then all sets of reals

are Lebesgue measurable,

have the Baire property, and

have the perfect set property.

Theorem (Carroy-Medini-M, JML 2020)

If all sets of reals are determined and X is a
zero-dimensional homogeneous space that is not
locally compact, then X is strongly homogeneous.

All of these results have local versions.
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Determinacy Axioms

Which games are determined?

open/closed Gale-Stewart (1953), ZFC

open/closed

Borel Martin (1975), ZFC

open/closed

Borel

analytic Martin (1970), measurable cardinal

open/closed

Borel

analytic

projective

Martin-Steel (1985), Woodin cardi-

nals and a measurable cardinal

open/closed

Borel

analytic

projective

AD

open/closed

Borel

analytic

projective

AD

ADR
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Theorem (Gale-Stewart, 1953)

Let A ✓ NN be open. Then the game with payo↵ set A is determined.

Proof.
Claim
Let s 2 2nN. If I does not have a winning strategy in the game starting with s,
then for any i 2 N, there is a j 2 N such that I does not have a winning strategy
in the game starting with s_(i, j).

Suppose I does not have a winning strategy.

Then we can use the claim
recursively to build a strategy ⌧ for II such that for any partial play s I does not
have a winning strategy in the game starting with s.

This ⌧ is a winning strategy for II: Suppose not and let x be according to ⌧

such that x 2 A.

As A is open, there is some basic open set O(x � 2n) ✓ A.

But then any strategy for I in the game starting with x � 2n is winning,

contradicting the definition of ⌧ .
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